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Abstract In this paper we present a novel concept
of attitude control for a multi-rotor unmanned aerial
vehicle by actively controlling its center of gravity.
This research is a part of our efforts to build a heavy
lift multi-rotor platform capable of carrying over 50 kg
of payload. To that end, we propose using miniature
two-stroke combustion engines to supply the neces-
sary lift and combine them with moving masses used
to control the vehicle attitude. In this paper we present
a complete nonlinear dynamical model of such a vehi-
cle and use it to derive the transfer functions of roll and
pitch dynamics. Furthermore, we formulate a detailed
root-locus based stability and sensitivity analysis of
the proposed control scheme and discuss its under-
lining effect on the mechanical parameter design.
We present the experimental testbed, consisted of the
vehicle mounted on a 2 degrees of freedom gimbal,
and derive necessary conditions for testbed parameters
in order to match the testbed and free-flight quadrotor
dynamics. Finally, we present simulation results from
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a Gazebo based simulator and experimental results of
the testbed. Both results confirm the findings of our
mathematical analysis.
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1 Introduction

The work presented in this paper fits within the
scope of an ongoing project called MORUS that aims
to build a cooperative autonomous robotic system
able to work both in air and underwater (Fig 1). To
that end, an unmanned aerial vehicle (UAV) and an
autonomous underwater vehicle (AUV) are brought to
work together on a common goal, maritime surveil-
lance. In the envisioned scenario, the UAV has to
be capable of lifting the AUV and carrying it to a
designated drop-off point.

Ever since they were introduced to the main-
stream [1], quadrotors have emerged as a number
one research platform used in aerial robotics. Since
then, numerous linear and nonlinear control algo-
rithms have been proposed and tested. However, these
algorithms rely on an underlining control concept
where one varies the rotational speed of the propellers.
In this paper we aim to explore additional control con-
cepts, namely, how to utilize the shifting center of
gravity (CoG) as a driving force for the control of the
quadrotor UAV.
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Fig. 1 The goal of the
MORUS project is to design
a cooperative autonomous
robotic system comprised of
a UAV and an AUV,
working together in a
maritime environment

The main incentive behind the proposed control
concept is the fact that the proposed mission scenario
which we aim to execute requires high power engines
capable of sustaining the vehicle and its heavy pay-
load (i.e. > 50 kg) in the air for a long period of time.
Even though electrical DC motors have been the back-
bone of every vertical takeoff and land (VTOL) UAV,
this is mostly due to their surpassing dynamical capa-
bilities when compared to internal combustion engines
(ICE). However, DC motors fall short in a power-to-
weight ratio comparison, which is crucial for lifting
heavy objects and sustaining them airborne for a long
period of time [2, 3]. Since there are no actual compar-
isons of ICE and DC motors in micro UAVs, we turn
to the findings in [3], where authors compared various
engines’ performance (i.e. fuel cell, ICE, DC, etc.) in
cars, to find that the current state of the art batteries
lack the necessary power density in order to archive as
long range as gasoline powered IC engines.

Although there has been tremendous advances in
the production of small combustion engines, there is a
growing concern within the robotics community, that
these engines do not have the necessary dynamical
capabilities to stabilize the quadrotor in flight. For
instance, the authors in [4], proposed a novel concept
of a quadrotor powered by a single four stroke ICE,
controlled through additional four mechanical varia-
tors which distribute power via shafts and gears. The
solution proposed in this paper, however, uses four IC
engines and controls the UAV by varying the over-
all CoG with moving masses. This control concept is
not new to robotics, and it has been widely studied
for the control of underwater vehicles, missiles and
space robots [5–8]. However, to the best of authors’

knowledge, this type of control has not been imple-
mented or tested on multirotor VTOL platforms. On
the other hand, UAV researchers explored the effect of
CoG variations [9–12], but only as a disturbance on
the control not as a means to control it.

We continue the paper with a complete 6 degrees of
freedom (DOF) mathematical model of the free-flight
quadrotor. This section helps to introduce the reader
to the Sections 3 and 4, where we first we give the
comparison of the moving mass control and classical
rotor speed control. Next, the dynamical performance
and sensitivity analysis is given in order to determine
values of some important mechanical parameters. We
conclude the paper with simulation results in a Gazebo
environment (Section 5) and experimental results of a
laboratory testbed (Section 6).

2 Mathematical Model of the Quadrotor
with Moving Mass Control

In this section we first derive a 6DOF nonlinear
model describing the vehicle’s translation and rota-
tion. From there, we linearize the attitude model to get
a transfer function suitable for control design, given in
Section 2.2. We also derive the linearized model of the
experimental testbed and compare it with the attitude
model of the free-flight UAV (Section 2.3).

All vectors used in this section are expressed in
the moving reference frame, i.e. the quadrotor body
frame denoted as L0 in Fig. 2. An exception is the
gravity force vector which we conveniently express in
the inertial frame LI . Next, coordinate frame LCoG

is the frame aligned with L0 and attached to the
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Fig. 2 MMC controls the
pitch and roll angle attitude.
Together with classic rotor
speed commands, which
control yaw angle and
height of the vehicle, it
forms a classic low level
attitude controller of the
multirotor UAV. The figure
shows quadrotor coordinate
frames: Main body L0,
moving masses L1, L3 and
the center of gravity LCoG.
Showing only pitch attitude
dynamics for clarity. The
connection between the
frames i and j is denoted
with vector ri,j
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vehicle CoG. Note that we express angular momentum
and angular velocities w.r.t. the vehicle’s CoG (LCoG

frame). We use the following notation for radius and
velocity vectors: rc denotes radius vector from the
inertial frame to the LCoG frame while r0,c denotes
radius vector from the L0 frame to the LCoG. Veloc-
ity vc denotes the velocity of the LCoG frame w.r.t the
inertial frame while v0,c denotes the velocity of the
LCoG frame w.r.t the L0 frame.

2.1 Nonlinear Dynamical Model of the UAV
with MMC

Moving Mass Control (MMC) is a concept that relies
on the change of CoG of the vehicle to ultimately
distribute torque around the body in order to control
its attitude. In total, a multirotor has 6 DOF, and in
our implementation MMC controls only two of them,
roll and pitch angle. Since the underlining physics of
MMC cannot effectively control its other degrees of
freedom, classical rotor speed control is applied to
yaw angle and height control. The only two DOFs left

(i.e. x-axis and y-axis) are controlled through high
level controllers, and thus fall out of scope of this
paper. The control structure is presented in Fig 1.

Mathematical modelling starts with the well known
formula for the time derivative of an arbitrary vector
r0 expressed in the moving reference frame L0 (body
frame), w.r.t. the inertial frame [13]:

dω

dt
(r0) = ṙ0 + ω × r0, (1)

where ṙ0 is vector rate of change in the moving ref-
erence frame. On the right side of the equation, ω

represents angular velocity of the moving reference
frame w.r.t. the inertial frame. In this paper ω repre-
sents the quadrotor’s angular velocity. Note that dω

dt

denotes the time derivative of a vector expressed in the
moving frame w.r.t the inertial frame.

The CoG of the vehicle observed in the body frame
is given by:

r0,c = mbr0,b + ∑4
i=1 mir0,i

mb + ∑4
i=1 mi

=
∑4

i=1 mir0,i

M
, (2)
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where mb as the mass of the quadrotor rigid body
(without moving masses), mi denotes the mass value
of a moving mass, M as the total mass of the vehi-
cle, r0,i and r0,b represent the positions of the i-th
mass and quadrotor body, respectively, expressed in
the body frame. Note that we used the assumption that
the origin of the body frame coincides with the CoG
of the quadrotor rigid body (i.e. the frame without
moving masses), which yields r0,b = 0.

Using (2), we can express the velocity of the CoG
frame (vc) w.r.t the inertial frame

vc = v0 + v0,c + ω × r0,c, (3)

with v0 as the velocity of L0 w.r.t the inertial frame
and v0,c as the velocity of LCoG frame w.r.t the L0

frame. Note that v0,c is simply computed as time
derivative of (2)

v0,c =
∑4

i=1 mi ṙ0,i

M
. (4)

Similarly, the velocity of the i-th moving mass (vi)
w.r.t. the inertial frame can be expressed as

vi = v0 + v0,i + ω × r0,i , (5)

with v0,i denoting relative velocity of the i-th mass
w.r.t. the quadrotor rigid body (L0 frame). Using (3)
and (5) we compute the velocity of the i-th moving
mass as the function of vc velocity

vi = vc + v0,i − v0,c + ω × rc,i , (6)

with rc,i denoting the position of the i-th mass in the
LCoG frame. Linear momentum of the i-th mass w.r.t.
the inertial frame is given by:

Li = mi · vi . (7)

By definition, the time derivative of the linear momen-
tum equals the sum of all external forces acting on the
i-th mass:

dω

dt
Li =

3∑

k=1

f ik, (8)

where we distinguish three external forces:

– The force of the motor that controls the mass
motion:

f i1 = KmTrUi

(
sin(

π

2
i)î − cos(

π

2
i)ĵ

)
, i ∈ {1, 2, 3, 4},

(9)

where Km is a motor constant, Tr is a transmission
ratio, Ui is voltage applied to the motor and î, ĵ as
the unit vectors of the L0 frame in x- and y-direction,
respectively.

– The gravity force:

f i2 = −mi · gK̂, (10)

where K̂ is the unit vector in z-direction of the inertial
frame, g is the gravity constant.

– Drag force which is simply modelled to be pro-
portional to the moving mass velocity with drag
coefficient cd :

f i3 = −cd · v0,i . (11)

To compute linear acceleration of the i-th control mass
w.r.t. the body frame, we combine (5) and (8) to yield:

dω

dt
v0,i = 1

mi

(
3∑

k=1

f ik

)

− dω

dt

(
v0 + ω × r0,i

)
. (12)

Next, we model the linear momentum of the overall
system. By definition, we write:

Ls = Lb +
4∑

i=1

Li , (13)

where Lb is the linear momentum of the quadrotor
body and Li is the linear momentum of the i-th mov-
ing mass. However, noting that v0,b = 0 and using
(2),(5), one can derive:

Ls = M
(
v0 + ω × r0,c

) +
4∑

i=1

miv0,i

= M
(
v0 + ω × r0,c

) +
4∑

i=1

L0,i , (14)

with v0 as the velocity of the quadrotor rigid body
w.r.t. the inertial frame and L0,i = miv0,i repre-
sents the linear momentum of the i-th mass w.r.t the
quadrotor rigid body.

Finally, using the definition of linear momentum
rate of change, we get the expression for the vehicle’s
rigid body acceleration:

dω

dt
v0 = 1

M

⎛

⎝
4∑

j=1

F rj + F g − dω

dt

4∑

i=1

L0,i

⎞

⎠− dω

dt
(ω×r0,c).

(15)
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External forces applied to the system include rotors’
thrust and gravity (drag is neglected). The thrust pro-
duced by each rotor is given by simplified, but widely
used, quadratic expression:

F rj = bf �2
j k̂, (16)

where �j is the j-th rotor speed, bf is motor constant,
k̂ is the unit vector in z-direction of the body frame.
We assume that the rotor speed is controlled and its
closed loop can be described as:

Tr�̇j + �j = �r,j , (17)

with Tr as time constant of a rotor powered with a gas
motor and �r,j as a rotor speed reference.

The gravity force expressed in the inertial frame is
given by:

F g = −MgK̂. (18)

To model angular motion, we use the definition of
the angular momentum w.r.t inertial frame expressed
in the LCoG frame combined with (6):

H s = H b +
4∑

i=1

H i (19)

H b =
∫

k

rc,k × (vkdmk)

=
∫

k

rc,k×(vc + v0,k−v0,c+ ω×rc,k)dmk (20)

H i =
∫

ji

rc,ji
×(vji

dmji
)

=
∫

ji

rc,ji
×(vc+v0,i −v0,c+ ω×rc,ji

)dmji
, (21)

where H s is the angular momentum of the overall sys-
tem, H b is the angular momentum of the quadrotor
rigid body and H i is the angular momentum of the i-
th mass. By dmk we denote the k-th infinitesimal part
of the quadrotor rigid body, vk represents its velocity
and rc,k is the vector from the CoG to the k-th part.
Note that by the definition of the rigid body, the veloc-
ity of the k-th part w.r.t the body frame equals zero
(v0,k = 0).

Using the definiton of the moment of inertia (MoI)
combined with (2), one gets:

H s = I c
sω +

4∑

i=1

rc,i × L0,i . (22)

where I c
s is the overall moment of inertia of the system

w.r.t. the vehicle CoG. The overall moment of inertia
can be computed by summing inertial contributions of
each part of the vehicle:

I c
s = I c

b +
4∑

i=1

I c
i , (23)

where I c
b is the moment of inertia of the quadrotor

rigid body (3× 3matrix) and I c
i is the moment of iner-

tia of the i-th moving mass (3× 3 matrix). To compute
these moments of inertia we use Steiner’s theorem,
formally known as Parallel axis theorem:

I c
i = I i + mi

(
r�

c,i · rc,iE3 − rc,i · r�
c,i

)
, (24)

where I i is the moment of inertia of the i-th part w.r.t.
its own CoG, and E3 is a 3 × 3 identity matrix.

The expression for angular velocity rate can be
derived from the following equation:

dω

dt

(

I c
sω +

4∑

i=1

rc,i ×L0,i

)

=
4∑

j=1

(
Mfj

+Mdj

)+Mg.

(25)

We model three types of external moments acting on
the vehicle:

– The moments of the rotor forces acting on some
radius from CoG:

Mfj
= rc,rj × F rj = (rc,o + ro,rj ) × F rj , (26)

where ro,rj is the vector from the body frame origin to
the j-th rotor.

– The rotor moments due to the induced drag:

Mdj
= ζj bmbf �2

j k̂, (27)

where bm is the moment constant of the propulsion
system, ζj = 1 if j-th propeller is clockwise (rotors
1 and 3) and ζj = −1 if the propeller is counter-
clockwise (rotors 2 and 4).

– The moment Mg due to the gravity forces

Mg = rc,b × (−mbgK̂) +
4∑

i=1

rc,i × (−migK̂), (28)
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where rc,b and rc,i denote position of the quadrotor
rigid body and i-th moving mass w.r.t. the CoG. It can
be easily shown that Mg = 0 as we are expressing
angular momentum w.r.t. the system CoG.

We use standard Euler angles representation for the
vehicle attitude. To get from the inertial frame to the
body frame, we assume that the vehicle is first rotated
around z-axis for yaw angle ψ , followed by the rota-
tion around body y-axis for pitch angle θ and finally
rotation around body x-axis for roll angle φ. In the
following section we consider small angular velocities
for which the roll and pitch rates can be approximated
by ωx and ωy , respectively.

2.2 Linearized Dynamical Model of the UAV

Attitude controllability through the shift of the vehi-
cle CoG is the main focus of this paper. To that end
we derive a transfer function that describes the rate
of change of the vehicle’s angular velocity w.r.t. the
change of the moving masses position. We will give
this analysis for pitch dynamics, but the same holds
for roll dynamics due to the vehicle symmetry. In
the derivation of the transfer function, we linearize
the equations in near hover condition which assumes
small angular velocity. As a consequence, we neglect
gyroscopic terms, euler terms and centrifugal terms
that arise from the analysis in the moving frame of ref-
erence. Furthermore, we consider that the mass servo
system ensures PT2S dynamics of the mass position
response to a given reference:

xi

xi,ref

(s) = 1
s2

ω2
mm

+ 2ζmm

ωmm
s + 1

, (29)

where xi is the position of the i-th mass in the body
coordinate frame, ωmm and ζmm as the servo system
natural frequency and damping. Note that in our pre-
vious work [14, 15] we modelled the moving mass
dynamics as PT1 term, but from the experiments
with our new moving mass mechanism presented in
this paper, we observed that the second order model
closely describes this dynamics. For the considered
pitch dynamics, we control the position of masses 1
and 3 displace the CoG in the body frame x-direction.

The moving masses positions in the body reference
frame (see Fig. 2) are given by:

r0,i = [
sin(π

2 i)L/2 + xi 0 zm

]T
, i ∈ {1, 3} (30)

r0,j = [
0 − cos(π

2 j)L
2 + yj zm

]T
, j ∈ {2, 4},(31)

where L/2 is the initial position of the mass (half of
the length L of the motor arm), x1, x3 are mass 1 and
3 displacements in body x-axis, y2, y4 are mass 2 and
4 displacements in body y-axis and zm is a mass dis-
placement in body z-axis. Note that we model zm to be
a constant displacement from the body origin, which
is the result of the vehicle geometry.

Substituting (30)–(31) into (2), with the assumption
of an equal weight of the moving masses, we get the
expression for CoG w.r.t. the body frame:

r0,c = μ · [
(x1 + x3) (y2 + y4) 4zm

]T
, (32)

where we introduced μ as a ratio of a moving mass
weight and total vehicle weight (μ = m

M
).

Next, the position of the rotors in the L0 frame is
given by:

r0,rj =
[
sin(

π

2
j)L − cos(

π

2
j)L zr

]T

, j ∈ {1, 2, 3, 4},
(33)

with zr as a vertical displacement of the rotors from
the L0. Using (26), (32), (33) and assuming all rotor
forces equal Fr,j |0, we compute the moments pro-
duced by rotor forces:

4∑

j=1

Mfj
= [

(Fr,2 − Fr,4)L (Fr,3 − Fr,1)L 0
]T

+
4∑

j=1

Fr,j [−μ(y2 + y4) μ(x1 + x3) 0]T ,

(34)

with Fr,j denoting the magnitude of the j-th rotor
force.

Now we expand (25) and extract expressions for
angular velocity in y - axis. After neglecting tensor
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products that occur in Ics and İcs due to the CoG shift
and modelling a moving mass inertial properties as a
point mass, we get:

Iyyω̇y =
4∑

j=1

Mfj
· ĵ − (Ixx − Izz)ωxωz

−2mbμ
2(x1 + x3)(ẋ1 + ẋ3)ωy

−2m
l

2
(ẋ1 − ẋ3)ωy

−2m(ẋ1x1 + ẋ3x3)(1 − 2μ + 2μ2)ωy

+4m(ẋ1x3 + ẋ3x1)μ(1 − μ)ωy

+mωz(ẏ2 + ẏ4)zm(1 − 4μ)

+mωxμ((y2 + y4)(ẋ1 + ẋ3)

−(ẏ2 + ẏ4)(x1 + x3))

−m(ẍ1 + ẍ3)zm(1 − 4μ), (35)

with Ixx, Iyy, Izz as nominal moments of inertia in x-,
y- and z-axis, respectively. These moments are com-
puted for the initial positions of the moving masses
in the center of each motor arm. The second term in
the RHS of (35) is a gyroscopic term which is com-
mon to a 3D rigid body dynamics. The third, fourth,
fifth and sixth terms stem form the moment of iner-
tia change (i.e. from İ

c

sω), while the seventh and eight
terms are the result of ω × ∑4

i=1 rc,i × L0,i projected
in the body y-axis. Finally, the ninth term is the y-
component of

∑4
i=1 rc,i × L̇0,i . Note that it can be

shown that
∑4

i=1 ṙc,i×L0,i = 0, and therefore there is
no contribution of that term to the attitude dynamics.

Now we introduce uθ as a control input for pitch
dynamics:

uθ = x1,ref = x3,ref , (36)

where x1,ref = x3,ref are reference values for mass
1 and 3 position, respectively. Then from (29) the
following holds:

x1(s) = x3(s) = uθ

s2

ω2
mm

+ 2ζmm

ωmm
s + 1

(37)

Next, we claim that dominant pitch dynamics in near
hover condition stems from the first and ninth term in

(35). Neglecting other terms in (35), using (34) and
(37) , we derive the following transfer function:

ωy(s)

uθ (s)
= 2mg − 2m(1 − 4μ)zms2

Iyys(
s2

ω2
mm

+ 2ζmm

ωmm
s + 1)

, (38)

where we assumed that the thrust of a single rotor in
the hovering state is Fr,j |0 = Mg

4 .
The transfer function (38) is valid for in-hover

condition. For non-hover conditions, the assumption
Fr,j |0 = Mg

4 is not valid any more. From the second
term in RHS of (34), we conclude that the system gain
would change if Fr,j varies. In particular, if the vehi-
cle is ascending (Fr,j > Fr,j |0), the gain would be
increased, and the opposite happens when the vehicle
is descending. For the horizontal motion, we expect
that the rotor drag forces, which are proportional to
horizontal velocity and rotor speed [16, 17], would
produce some influence on attitude dynamics, partic-
ularly if the rotors are significantly displaced from
the CoG (zr >> 0). We will address the model and
influence of these forces in our future work.

In this paper we address the controller design in dis-
crete domain. To that end, we give the discrete transfer
function of (38) using the parameters from Table 1 and
ZOH transformation:

ωy(z)

uθ (z)
= −0.03377z2 + 0.06832z − 0.03379

z3 − 2.724z2 + 2.473z − 0.749
. (39)

2.3 Linearized Dynamical Model of an Experimental
Testbed

In order to test the proposed algorithm we developed
a 2 DOF laboratory testbed shown in Fig. 3. The full
scale UAV that we have recently developed is fixed to
a gimbal which is free to rotate around a center point
of rotation (roll and pitch angle). Although the ICE
engines and rotors are mounted on the vehicle, in this
experimental testbed we do not used them to produce
forces and torques. Furthermore, since the gimbal
is constrained to rotate around a fixed point, there
are some substantial differences between the gimbal
model and free-flight quadrotor model. Therefore in
this section, we derive the model of the testbed from
the afore disseminated free-flight quadrotor model.
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Table 1 Model parameters
Symbol Value and unit Description

Ixx 6.8 kgm2 Quad. overall MoI (roll)

Iyy 6.5 kgm2 Quad. overall MoI (pitch)

m 1 kg Moving mass weight

M 34 kg Vehicle overall weight

bf 4.56e-4 kg ·m Thrust constant of the gas motor

bm 0.01 Moment constant of the gas motor

ω0 427.4311 rad/s Rotors velocity in hover

L 0.84 m Motor arm length

ν 0.92 The ratio of MoI without and with masses

ωmm 17 rad/s Natural frequency of the mass servo system

ζmm 0.85 rad/s Damping factor of the mass servo system

Tr 0.2 s Time constant of the rotor


l ±0.25 m maximum displacement of the mass

zm 0.05 m Vertical displacement of the mass plane

Ts 0.01 s Sampling time of the discrete system

In order to maintain mathematical consistency
throughout the paper, we propose representing the
fixed point of rotation as having infinite mass and
infinitesimally small tensor of inertia. This observa-
tion allows us to calculate the center point of rotation
of the laboratory testbed using (2):

r0,c = lim
M→∞

mbr0,b + ∑4
i=1 mir0,i

M
= 0. (40)

It is also worth noting that using this formulation lin-
ear velocity of the system (15) approaches zero (i.e.
standstill)

lim
M→∞ v0 = 0.

When one applies the same reasoning to angular
motion, the fixed z axis of the testbed is modelled as
infinite moment of inertia, while the x and y axes,
which are free to rotate, ideally have a finite value.
Therefore, one can write:

Igb =
⎡

⎣
Ixx 0 0
0 Iyy 0
0 0 ∞

⎤

⎦ , (41)

thus effectively constraining the angular motion only
around body x and y axes (roll and pitch angle).

It turns out that the most significant effect on the
motion dynamics comes from the component rc,i ×

L̇0,i . Since the LCoG is static for this experimental
testbed, it holds rc,i = r0,i . Therefore, the positions
of the masses w.r.t. LCoG is given by (30) and (31).
Comptuing rc,i × L̇0,i term, one gets:

4∑

i=1

rc,i × L̇0,i = 2mi

[ −zmẏi zmẋi xi ẏi − yi ẋi

]T
.

(42)

1L

3L CoGL
3m

1m

3,or

1,or

IL

z

x

3rF

1rF

mz

bL bor ,

Fig. 3 The figure shows the gimbal testbed coordinate frames.
Note that for the gimbal case L0 and LCoG coincide. Therefore,
we introduced the coordinate frame Lb attached to the quadro-
tor rigid body CoG. For the free-flight quadrotor Lb and L0
coincide (see Fig. 2)
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Just like in the free-flight quadrotor dynamics, zm

plays a crucial role in system dynamics. Since the gim-
bal is not free to rotate in yaw axis, the z component
of (42) has no influence on gimbal dynamics.

The second part of the system dynamics are torques
acting on the system. Since we do not use rotors and
neglect drag and friction torques, the only torques left
acting on the system come from the gravity torque
(28), which for the gimbal case does not equal zero.
During the experiments we have discovered that the
position of the quadrotor rigid body rc,b plays an
important role in gimbal dynamics. Therefore, in this
paper we analyze in details (28) for rc,b �= 0.
The position of the quadrotor rigid body (Lb frame)
mounted on the gimbal can be expressed as:

rc,b = ro,b = [
xb yb zb

]T
. (43)

Using (30), (31) and (43) we expand (28) in pitch axis
which yields:

Mg,y = Mg · ĵ = g (m(x1 + x3) cos(θ) − 2mzm sin(θ)

+mbxb cos(θ) − mbzb sin(θ)) . (44)

We linearize (44) by assuming small pitch angle which
yields cos θ ≈ 1 and sin θ ≈ θ . Now if the following
conditions are satisfied:

zmθ ≈ 0, xb ≈ 0, zbθ ≈ 0, (45)

then we can show that linearized gimbal pitch dynam-
ics is identical to the linearized pitch dynamics of the
free-flight quadrotor. Using (45), one can write the
dynamics equation of the gimbal:

dω

dt

[
Iyyω + mzm(ẋ1 + ẋ3)

] = m(x1 + x3)g. (46)

The aforementioned equation clearly shows that, if
(45) holds, one can observe gimbal dynamics as a spe-
cial case of general quadrotor motion, where M >>∑4

i=1 mi and consequently limM→∞ μ = 0. When
we include the mass servo system dynamics and apply
the same linearization reasoning as in Section 2.2, we
get the linearized transfer function of the laboratory
testbed:

ωy(s)

uθ (s)
= 2mg − 2mzms2

Iyys(
s2

ω2
mm

+ 2ζmm

ωmm
s + 1)

. (47)

It is easy now to show that (38) reduces to (47) when
limM→∞ μ = 0.

Conditions (45) can be easily interpreted as fol-
lows: The gimbal axes of rotation should be mounted

as close as possible to the vehicle CoG, yielding xb ≈
yb ≈ zb ≈ 0. The moving masses vertical displace-
ment should be also kept close to zero (zm ≈ 0).
Finally, the gimbal should not exhibit large roll and
pitch angles, as it then holds sin(θ) ≈ sin(φ) ≈ 0.

3 The Moving Mass Control vs Traditional
Attitude Control

In this section we compare two concepts of attitude
control for multi-rotor UAVs, MMC versus classical
rotor speed control. It obviously follows from (26)
that one can control the torques produced on the vehi-
cle in two ways: In the proposed approach (MMC),
rotor torque is controlled by changing the relative dis-
tance between a rotor and the controlled CoG (i.e.∑

rc,o + ro,mj
); On the other hand rotor speed con-

trol achieves this effect by varying the rotor speed
which consequently changes thrust

∑
Frj . It is impor-

tant to note that the torque required to control the
attitude is in both cases produced by rotor forces.

We can now express the pitching angular rate trans-
fer function w.r.t. small rotor velocity change, typical
for a traditional control, as [16]:

ωy(s)


�(s)
= 4bf ω0L

νIyys(Trs + 1)
, (48)

where bf denotes rotor force constant, ω0 represents
rotor speed in hover, Iyy is the MoI of the vehicle
in y-axis with masses and ν represents the ratio of
the vehicle’s moments of inertia without masses and
with masses. For the complete list of parameters see
Table 1.

Comparing the transfer function of the MMC con-
trol concept (38) with the traditional approach (48),
one can conclude that there are two major differences:
the first is the existence of system zeros in (38) and
the second in the actuator dynamics (PT1 vs PT2S).
One should not neglect the system zeros in controller
design as it could deteriorate system performance, or
even cause instability as it will be shown in the next
section. The position of zeros depends on the verti-
cal mass displacement w.r.t. CoG ((1−4μ)zm), which
means that altering the vertical position of masses
changes system dynamics. This is a valuable insight
into system dynamics which will be considered in the
mechanical design of the vehicle.
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When it comes to the actuator dynamics, in our
previous work [14, 15] we assumed that the moving
mass servo system exhibits PT1 dynamics, similar to
the rotor dynamics (17). In this work, we identify the
dynamics of the designed moving mass mechanism as
a PT2S term (see Section 6) and repeat the frequency
analysis from [15]. The assumptions used in [15] are
valid also here. First, we consider the mass plane and
rotors plane to be in the same vertical level as the
vehicle CoG. As a consequence, the zeros from (38)
cease to exist. Furthermore, we make an assumption
that the dynamics of a rotor powered by a gas motor
is similar to the dynamics of the mass servo system in
terms of the actuator bandwidth. One has to note, that
this last assumption actually favors the classical rotor
speed approach, since the time constant of IC engines
is relatively slow w.r.t. DC motor servo control.

Finally, we present the Bode diagram of (38) and
(48) in Fig. 4. In the same figure we add the Bode
diagram of the moving mass control concept with the
mass dynamics presented by a PT1 term, with time
constant equal the rotor time constant Tr . From the
presented curves one can conclude that the system
with the moving mass control has a higher crossover
frequency (ωc,mm) than the system with a traditional

control concept (ωc,r ). In particular, from Fig. 4 we
get:

ωc,mm = 2.68 rad/s

ωc,r = 0.12 rad/s. (49)

This last result is a consequence of the higher open
loop gain in (38) than in (48), and it implies that the
moving mass control concept has a theoretically faster
dynamics than the traditional rotor control. One could
even use a much slower, and thus a cheaper, MMC
servo system to control the attitude with the similar
bandwidth as in the common rotors approach.

Comparing PT2S vs PT1 servo model, we con-
clude that there is no significant difference in
crossover frequencies, but the biggest difference is in
the system gain margin. With PT1 model we theo-
retically achieve infinite gain margin, but for a PT2S

term we get a finite gain margin value. Furthermore,
the system phase margin is reduced when analyzing
servo dynamics as PT2S term. These observations jus-
tify the introduction of the second order model for the
mass servo system, which allows us to determine more
realistic boundaries of the system stability.

The biggest shortcoming of the MMC is the maxi-
mum pitching (rolling) moment that can be generated
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Fig. 4 Bode diagram of the open loop systems. The first system is controlled through the moving mass control (blue and green curves)
and the second through variations in rotor velocities (red curve)
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with such a concept, due to the physical limitations on
the mass maximum displacement. Therefore, previous
analysis is valid only for mass displacements that do
not violate saturation limits. The maximum moment
of our concept is discussed in the next section, with
a goal to find parameters of mass weight and maxi-
mum displacement reach that provide the maximum
dynamic torque.

4 Mechanical Parameter Design

In this section we present the design analysis for
important parameters of the MMC control, namely the
weight of the moving mass, its maximum displace-
ment reach, its vertical position w.r.t. the CoG and its
dynamics. We aim to find parameters that provide the
highest dynamic torque and low sensitivity to model
variations.

4.1 Design of Mass Weight and Arm Length

We start by analyzing the influence of moving mass
weight and its maximum displacement on attitude
dynamics. We assume that the initial mass position is
in the half of the motor arm, and therefore maximum
displacement of the mass equals D = ±L

2 , where L is
the motor arm length.

The goal of this analysis is to optimize the angu-
lar speed response. In other words, we define a metric
which reflects the bandwidth of the open loop, and
optimize the metric w.r.t. the moving mass weight and
motor arm length. As an appropriate metric we pro-
pose to use the maximum angular acceleration that can
be achieved for the given set of parameters.

The measure of the maximum angular velocity can
be expressed from (38):

ω̇y = 2mgx

Iyy

, (50)

where we used x = x1 = x3 as mass 1 and 3
longitudinal displacement in the x-direction of the
quadrotor frame. Note that (50) corresponds to the
steady state value of the angular acceleration given the
step reference to the mass 1 and 3 position:

ω̇y(∞) = lim
s→0

s · Gω̇y (s) · U(s) = 2mgx

Iyy

. (51)

The model of the pitching MoI for the overall
system is given as:

Iyy = Ib,yy +
4∑

j=1

(
Imaj,yy + Imj,yy

)
(52)

where Ib,yy is the MoI of the quadrotor rigid body
parts, which does not depend on moving mass posi-
tion nor motor arm length. These parts include central
body, landing gear and gas motors. Imaj,yy and Imj,yy

are the moments of inertia of the motor arms and mov-
ing masses, which depend on the variables that we
want to optimize. Note that we assume that the posi-
tions of the gas motors are fixed, and consequently
their MoIs do not change with the change of motor
arm length. Therefore, we consider extending motor
arms only to achieve an extension of the moving mass
rail, i.e. the mass maximum displacement. We get the
value for Ib,yy from our initial CAD design.

To determine motor arms inertial properties, we
model an arm as a hollow square tube made of car-
bon fibre and we express the MoI as a function of its
length. Based on known formulas for inertial proper-
ties of a hollow tube and utilizing initial arm CAD
design, we determined the following relation:

Ima2,yy = Ima4,yy = κ1 · L

κ1 = 0.1404, (53)

where Ima2,yy and Ima4,yy denote the pitching
moments of inertia of arms 2 and 4 w.r.t. the vehicle
CoG.

Similar procedure, applied to determine the pitch-
ing MoI of the longitudinal motor arms (x-direction),
yields:

Ima1,yy = Ima3,yy = λ3 · L3 + λ1 · L

λ3 = 2.0159 , λ1 = 0.0702. (54)

where Ima1,yy and Ima3,yy denote the pitching
moments of inertia of arms 1 and 3 w.r.t. the vehicle
CoG.

In this analysis a moving mass is modeled as a point
mass. Therefore, the mass 2 and 4, that are placed
in the lateral direction and perfectly aligned with the
body y-axis, do not contribute to the pitching MoI.
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On the other hand, the MoI of the mass 1 and 3, can be
expressed as (their vertical displacement is neglected):

Im1,yy = m

(
L

2
+ (1 − 2μ)x

)2

Im3,yy = m

(−L

2
+ (1 − 2μ)x

)2

. (55)

From (55), the MoI of moving masses depends on the
mass position x, and therefore it will change during
the mass control. In this analysis we propose to use the
maximum value of the term Im1,yy + Im3,yy . It can be
easily shown that this maximum value is achieved for
x = ±L

2 , which corresponds to the maximum mass
displacement. Letting x = L

2 , we get the following
expression:

ω̇y = mgL

Ib,yy + 2Ima1,yy + 2Ima2,yy + Im1,yy + Im3,yy

.

(56)

We depict (56) as a 3D surface plot in Fig. 5. To
get the maximum angular acceleration, we seek for an
extremum of (56), as a function of two variables, m

and L. Taking the first and second derivatives of (56),
we do not get candidates for extremum points. How-
ever, fixing m and taking the derivative w.r.t. L, we
get the expression for Le that gives maximum angular
acceleration for provided m. As Le is the solution of a
cubic polynomial, which is not a compact expression,
we do not present it here.

Presented results suggest that, in order to get bet-
ter dynamical performance, one should increase m

indefinitely. In practice, the moving mass weight is
limited by the vehicle payload, and we certainly do

not want to spend all the available payload on moving
masses only. Therefore, design strategy is to choose
the moving mass weight according to the given pay-
load requirements and then compute optimal motor
arm length. According to the datasheet of the gas
motor and rotor that we plan to use, the maximum
thrust of a single rotor is approximately 20 kg [18].
Based on our experience, we decide that the mass of
the moving mass should not exceed 10% of the max-
imum thrust of a single rotor, which yields mmax =
2 kg. At this point we choose m = 1 kg and from
Fig. 5, we get Le = 0.84 m for the chosen m. Given
(m, L) = (1, 0.84), (56) yields:

ẇy,max = 0.93 rad/s2. (57)

The arm length of the vehicle presented in Section 6
is almost identical to the optimal value computed in
this Section. The biggest difference between the ana-
lyzed system and designed vehicle is the length of
the moving mass path. In this analysis we assumed
that the moving mass path length is equal to the arm
length. However, due to the physical dimensions of the
designed moving masses and central UAV body, the
actual path length is limited to 50 cm. The final CAD
designs of the UAV arm and moving mechanism are
shown in Fig. 6a.

4.2 Moving Mass Dynamics Design

In this analysis we aim to determine the required
speed-torque curve for the servo system driving a
moving mass. The determined curve plays a crucial
role for choosing the appropriate servo drive. Our
approach is to determine the required dynamics for the

Fig. 5 Maximum angular
acceleration as a function of
the mass weight and arm
length. The marked point on
the surface corresponds to
the chosen value of
parameters (m,Le) = (1,
0.84).
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Fig. 6 CAD designs of the UAV arm and moving mass mechanism

moving mass which stabilizes the vehicle and achieves
desired robust performance. Given the determined
dynamics, we compute accelerations and velocities
exhibited by the moving mass given a step setpoint
on its position. To transform these linear quantities to
their angular counterparts exhibited by the motor, a
transmission mechanism, which translates the angular
motion of the motor to the linear motion of the moving
mass, is required. We have chosen a rack and pin-
ion mechanism where the motor, mounted on a linear
guide, acts as the moving mass (see Fig. 6). For this
design, the radius of the gear determines the relation
between linear and angular velocities/accelerations.

First, we analyze the influence of the moving mass
dynamics to system stability and robustness. In par-
ticular, we compute gain margin, phase margin and
crossover frequency of the transfer function (38) as a
function of the moving mass natural frequency ωmm.
From these characteristics we determine natural fre-
quency required to achieve desired robustness and
speed of the closed loop response [19]. Damping fac-
tor in (29) is another parameter that determines the
dynamics of the servo system. However, through the
analysis we have concluded that for the damping fac-
tors greater than 0.6, there is no significant difference
in the analyzed frequency characteristics. Therefore,
we choose damping factor 0.7 (technical optimum)
and vary the natural frequency in the interval [1,50]
rad/s. In addition, we vary also moment of inertia
value in range [2–10] kgm2 to account for uncertainty
of this parameter. The computed characteristics are
depicted in Fig. 7.

From Fig. 7a and b one can conclude that both
gain and phase margin increase as the moving mass
dynamics gets faster (i.e. ωmm increases). For the cho-
sen natural frequency, the system with bigger inertia
has greater gain and phase margin than the system
with smaller inertia. Interesting result is obtained from
Fig. 7c. The system crossover frequency increases
with an increase in the moving mass natural frequency,
but only up to a limit value. This limit value is deter-
mined by the moment of inertia and it increases as the
moment of inertia decreases.

Finally, we utilize practical recommendations on
gain and phase margins from [19] in order to obtain
a reasonably robust system. In particular, the recom-
mended upper limit of the gain margin is 5, while the
upper limit of phase margin is 60◦. For these values
and the moment of inertia 6 kgm2 (mid value of the
analyzed range), we obtain that the natural frequency
should be at least 12 rad/s.

From the determined parameters of the moving
mass transfer function (29), we compute the veloc-
ities and accelerations exhibited by the mass given
a step setpoint 0.25 m (half of the mass maximum
displacement). These responses are shown in Fig. 8.
The torque of the servo motor (τsm) required to accel-
erate/decelerate the moving mass and its rotational
speed (�sm) are computed as follows:

τsm(t) = ma0,i (t)r, (58)

�sm(t) = v0,i (t)

r
, (59)
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Fig. 7 Frequency analysis
of attitude dynamics as a
function of the moving
mass natural frequency
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servo system driving the moving mass. In the same figure we show the speed-torque curve of the chosen servo motor

where a0,i is the moving mass acceleration and r =
0.045 m is the gear radius.

For each time instant we acquire a pair of speed and
torque values computed by (58) and (59). The set of
these values presents the required speed-torque curve
for the servo system, shown in Fig. 8d. When choosing
the servo drive, we have considered using DC, BLDC
and stepper motors. Eventually, stepper motors turned
out to be the most appropriate for our application. In
particular we have chosen JVL MIS231 stepper motor
with integrated driver and control board. The speed-
torque curve of the chosen motor is shown in Fig. 8d,
which proves its fit for the considered design.

4.3 Mass Vertical Displacement Considerations

In this section we analyze the influence of the mass
plane vertical displacement w.r.t. the vehicle CoG. In
our recent work we have used the Hurwitz criterion to
show that the angular rate loop of the continuous sys-
tem, closed with P controller, can become unstable in

the case where the mass plane is above the CoG (i.e.
zm > 0). The same does not hold for zm < 0, for
which linearized continuous time system is stable for
every gain. For zm = 0 the vehicle model is quali-
tatively similar to the model of a standard quadrotor
which uses variations in rotor velocities to control the
attitude [14]. In this work we analyze in more details
the attitude dynamics when zm crosses from negative
to positive values.

First, we analyze the sensitivity of the system to the
zm parameter [19]. To that end, we derive the relative
sensitivity of the system to variations in zm:

Sz(s) = ∂lnGω

∂lnzm

= zm

Gω

∂Gω

∂zm

= −(1 − 4μ)zms2

g − (1 − 4μ)zms2

(60)

Note that the system sensitivity does not depend on the
moving mass dynamics. Therefore, (60) is valid for
both PT1 model of the moving mass dynamics [15]
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and PT2S model used in this paper. Using ZOH trans-
formation with sampling time Ts = 0.01 s, (60) is
transfered to discrete domain. For the discrete sensitiv-
ity function, magnitudes of Bode diagrams, for several
positive and negative zm values, are shown in Fig. 9.
We conclude that the sensitivity of the system is sig-
nificantly different for positive and negative zm and
the system is more sensitive for negative values of zm.
For zm = 0, an ideal case difficult to achieve in prac-
tice, the system sensitivity is 0. The sensitivity peaks
for negative zm occur at the frequencies of the system
zeros. Those frequencies can be derived from (60).

Next, we show how the dynamics of the closed loop
angular rate changes with the variations of zm. To that
end, we give a root locus analysis for the discrete sys-
tem (39). First, in Fig. 10 the root locus curve for zm

in range [−0.2, −0.01] is given. Two curves start at
the poles of the open loop system and finish up at
two zeros. We notice that the closed loop can become
unstable for sufficiently large gain, which, as already
stated, is not the case if continuous system is analyzed
[14]. Therefore, this property is a consequence of dis-
cretization and should be taken into considerations in
the controller design.

In Fig. 11 we show the root locus for zm = 0. In
this case, there are no zeros in the open loop of the
continuous system and two zeros occur in the closed
loop as a consequence of discretization.

The third type of the root locus curve is given in
Fig. 12 for zm in range [0.01, 0.2]. Again, there is a
gain limit that guarantees the system stability, which
is qualitatively similar to the continuous time system,
analyzed in [14]. Furthermore, as zm increases, the
zeros of the open loop are getting closer to the critical

point (1,0), thus reducing system stability margin and
bandwidth.

To further demonstrate how zm parameter effects
vehicle dynamics, we show step response of the angu-
lar velocity loop controlled with a simple P controller.
We choose controller gain Kp = 1.5, designed for
the system with zm = 0, for which we get a smooth
response with a small overshoot. We simulate the sys-
tem with the same controller for zm values −0.2 and
0.2 m. Step responses for these cases are shown in
Fig. 13. The system with negative zm remains stable,
while the systemwith positive zm exhibits oscillations,
suggesting that using the gain chosen for zm = 0
we have reached system stability boundary. Further
increase in zm, which could happen if the vehicle grabs
an object, would further destabilize the system. There-
fore, one has to be careful when designing controller
gains for this system, particularly for applications
including object transportation and manipulation. Fur-
thermore, we observe from the given responses a non-
minimum phase behavior of the system with zm > 0,
where the vehicle starts rotating in the direction oppo-
site to the given reference before eventually reaching
the desired state. For zm < 0 the opposite effect hap-
pens: The system zeros accelerate the vehicle towards
the given reference for a short period in which they
dominate the dynamics.

The vertical displacement of the moving masses
used in the experimental testbed (Section 6) is slightly
above the vehicle CoG. Ideally, we would choose
zm = 0, which would make the control of the system
virtually identical to the control of a common quadro-
tor. However, in practice it is extremely difficult to
achieve exactly zm = 0 and we can expect variation of

Fig. 9 Sensitivity of the
system (open loop) to
variations in zm
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Fig. 10 Root locus curve
for negative zm
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CoG by adding equipment (e.g. gimbal with a camera)
or carrying an object. In each case, the analysis given
in this section provides valuable insights into system
dynamics and we use it to determine the controller
gains for both simulation and experimental testbed. In
the remainder of this paper we work with zm = 0.05
m, which corresponds to the mass vertical displace-
ment in the full scale vehicle that we have recently
built.

5 Simulation Results of the Free-flight Quadrotor
Control

We have developed a vehicle model in the Gazebo
simulator within Robot Operating System (ROS). We
use this Gazebo model to verify the mathematical

model presented in Section 2 and to test the devised
control algorithms in a realistic simulation environ-
ment. This model is based on two ROS packages
widely used for simulating rotor-UAVs, namely hec-
tor gazebo plugings [20] and rotors simulator pack-
age [21]. As any Gazebo model, it consists of several
links connected with joints. There is a central body
link to which the motor arms are attached. At the end
of a motor arm, there is a rotating joint to which a
rotor is attached. To simulate rotor dynamics, we uti-
lize a plugin from the rotors simulator package. We
extend this standard quadrotor model by adding a pris-
matic joint in each motor arm, used to move a cuboid
link with inertial properties within the arm. Through-
out this paper this cuboid link is called the moving
mass. A PID plugin in ros control package is uti-
lized to control the moving mass position. Finally, two

Fig. 11 Root locus curve
for small positive zm. On
the curve for zm = 0.05 m,
we mark the point which
corresponds to the designed
gain of the angular rate loop
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Fig. 12 Root locus curve
for positive zm

plugins from hector gazebo package are used to sim-
ulate realistic sensory set consisted of an inertial
measurement unit and a generic pose sensor. We use
fusion algorithms developed in our previous work to
estimate 6 DOF vehicle pose [22, 23].

An important note to the Gazebo model presented
in this paper. We consider gas motor dynamics to be
similar to the dynamics of an electrical motor with a
large inertia. In other words, a change of the gas motor
rotational speed, i.e. a change of the rotor speed, is
approximated with a PT1 dynamics with 200 ms time

constant. As a comparison, time constant of brush-
less DCmotors, dominantly used in rotor-UAVs, range
from 15 to 50 ms. More comprehensive gas motor
dynamics will be investigated in our future work.
The complete source code used throughout simulation
experiments can be found in [24].

5.1 Controller Design

In this paper we consider controller design in discrete
domain. For the height and yaw control we use PID

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5 z
m

 = -0.2 z
m

 = 0 z
m

 = 0.2

t [sec] (seconds)

an
gu

la
r 

ve
lo

ci
ty

 [r
ad

/s
]

Fig. 13 Step responses of the angular velocity loop controlled with P controller. The controller gain is designed for zm = 0 and we
test the response of the systems with zm = −0.2 m and zm = 0.2 m
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cascade control algorithms, whose design follows a
standard procedure already presented in our previous
work [22, 23], and will not be discussed here.

For the pitch (roll) control, we design a classi-
cal cascade control, with P controllers in the inner
(angular rate) and outer loop (angle). To address both
stability and performance of the system, we choose
root locus design. The root locus curve for zm =
0.05 m, representing angular velocity closed loop, is
shown in Fig. 14a. We choose Kpin = 0.7 which
gives a pair of complex-conjugate poles and a single
real pole.

For the outer loop, first we determine the transfer
function of the open loop system which includes the
designed closed loop angular rate dynamics and an
integrator:

θ(s)

θ̇ref (s)
= −0.0002364z2 + 0.0004782z − 0.0002365

z4 − 3.748z3 + 5.268z2 − 3.293z + 0.7727
.

(61)

The root locus curve for (61) is given in Fig. 14b.
We choose Kpout = 1.4 as the gain for the outer
P controller, which gives two pairs of complex-
conjugate poles with satisfactory speed and damping.
Note that the choice of poles for the case where we
model the mass servo system with PT2S term is more
complicated than in the case where a PT1 term is used
[15]. Therefore we use an iterative procedure: Once
the poles are chosen, we analyze the step response of
the closed loop, and if the speed or damping were not
satisfactory, we pick another set of poles from the root
locus curves.

5.2 Simulation Results

The system and controller have been thoroughly tested
in the Gazebo environment. First, we present the res-
ponse of the system given the step reference on roll
and pitch angles. The results are shown in Fig. 15. In
addition, we give the response of the mass servo sys-
tem (one for each mass) responsible for shifting the
CoG (Fig. 16). The system follows the reference with
rising time approximately 1 s. There is no significant
difference in roll and pitch dynamics and coupling
between roll and pitch is as well not observed. One can
notice a small influence of the non-minimum phase

zero - the vehicle starts rotating in the direction oppo-
site to the given reference before eventually reaching
the desired state.

Finally, we test the stability margin of the vehicle.
To that end, we increase the proportional gain of the
outer pitch loop until the stability margin is reached.
The gain is increased by 1 every 10 s. The response
of the pitch is shown in Fig. 17. The critical gain
equals approximately 7.5. For that gain, the vehicle
remains airborne, but exhibits high frequency oscil-
lations due to the saturation limits on mass positions
(see Fig. 18). The theoretical critical gain, determined
from root locus in Fig. 14b, equals 8.2, which suggests
a satisfactory agreement between a linearized model
used for root locus analysis and the nonlinear Gazebo
model. The video showing simulation experiments can
be found in [25].

6 Experimental Results on the Laboratory Testbed

For the experimental testbed we use a full scale vehi-
cle mounted on a gimbal (Fig. 19) whose motion is
constrained to 2DOF (roll and pitch angle). To sat-
isfy conditions (45) for gimbal dynamics, we have
mounted the axes of rotation as close as possible to
the vehicle CoG. While in [15] we used a small scale
gimbal with Dynamixel motors as a mass servo sys-
tem, the full scale vehicle uses MIS231 stepper motors
with a rack and pinion mechanism transforming rota-
tional to linear motion. A Pixhawk flight controller is
attached to the vehicle main body and we utilize its
IMU to measure attitude. All control and estimation
algorithms have been implemented onboard Pixhawk
which ensures real-time execution. The description of
the complete vehicle’s hardware and software infras-
tructure is beyond the scope of this paper and will
be addressed in our future work. In the remainder
of this section we present identification procedures
used to determine important system parameters and
experimental results on roll/pitch control.

6.1 Identification Results

We have conducted experiments in order to identify
important parameters for system dynamics, namely
moment of inertia and moving mass dynamics. For
the moment of inertia identification, the vehicle is
excited with a known constant torque, independently
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Fig. 14 Root locus curves used for the design of the proportional cascade controllers

for roll and pitch axis. To produce constant torque, we
utilized existing moving mass mechanisms: The
masses are maximally displaced and the vehicle is

released to freely rotate from the initial position
(φ0, θ0 = 0◦). Since the masses do not move and the
torque is constant, it follows from (38) that the pitch
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dynamics for this case can be described by double
integrators:

θ(s)

τ (s)
= 1

Iyys2
, (62)

where τ(s) = 2mg
l
s

and 
l = 0.25 m as the mass
maximum displacement.

We have conducted the described experiment for
several times to obtain bigger identification dataset.
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www.manaraa.com

240 J Intell Robot Syst (2017) 88:219–246

time [s]
390 400 410 420 430 440 450 460 470

[r
ad

]

-0.15

-0.1

-0.05

0

0.05

0.1

Fig. 17 Gazebo model simulation results on stability. The controller gain is increased until the stability margin is reached

To find the moment of inertia value, we have run an
optimization procedure in MATLAB® based on the
fminsearch function. The optimization criteria is cho-
sen as the minimum root mean square (RMS) error

between the measured response and response pre-
dicted with (62), computed on each dataset. The same
procedure is repeated for roll axis. Eventually, we have
obtained the following values Ixx = 6.8 kgm2 and
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Fig. 18 Position responses of mass 1 during the stability test
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Iyy = 6.5 kgm2. The measured and identified angle
responses are shown in Fig. 20.

Next, we have conducted experiments to identify
the moving mass dynamics. To that end, a step posi-
tion setpoint is given to the moving mass and its
response is measured. Again, we utilize MATLAB®

and its System Identification Toolbox™ to determine
the moving mass transfer function. Eventually, the
best fit (the minimum RMS error between the mea-
sured and predicted response) is achieved with PT2S

term with the following parameters ωmm = 17 rad/s
and ζmm = 0.85. Note that the identified natural
frequency is higher than the minimum required fre-
quency (ωmin = 12 rad/s) computed in Section 4,
from which we conclude that the chosen moving mass
system should be able to stabilize vehicle’s roll and
pitch angles. The measured and identified position
responses are given in Fig. 21.

Finally, we have also determined the weight of each
moving mass (m = 1 kg) and entire vehicle (M =
34 kg) using a laboratory scale.

6.2 Control Results

We have started the experiments with the same con-
trollers structure and gains as in the simulation. These
controllers were able to stabilize the vehicle but we
noticed two issues, which were not observed in sim-
ulation. First, the response of the angle closed loop
contained a static error, which is mainly due to the
friction and a small displacement of the gimbal axes
from the vehicle CoG. Therefore, we added integral
component in the outer (angle) control loop with gain
Ki,out = 1. One can easily prove, using results from
[14], that the system with PI-P cascade controllers is
stable. Second, there was a significant noise in angular

Fig. 19 Laboratory testbed - the UAV mounted on a gimbal and constrained to 2DOF (roll and pitch angle). Four stepper motors are
used to move masses. Showing also a DLE111, an internal combustion engine which will be used to power the propulsion system
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Fig. 20 Identification results of the vehicle’s moment of inertia. We show roll (a) and pitch (b) response given the step change in the
rolling/pitching moment

velocity measurements due to the vibrations produced
by the moving masses. To reduce the noise, we added a
first-order low-pass filter (Tf = 0.02 s) on the angular
velocity measurements.

In Figs. 22 and 23 we give the responses of the
roll and pitch angle and the moving masses posi-
tion, respectively. One can conclude that the rise time
of the testbed is almost identical to the rise of the
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Fig. 23 Position response of the mass servo system used to control vehicle’s roll and pitch angles

simulated vehicle. However, the testbed response is
a bit more oscillatory than the simulation response,
which is due to added integral component in con-
trollers and low-pass filtering of the feedback signals.
The video showing the experiments of the laboratory
testbed can be found in [25].

7 Conclusion

In this paper we have presented a novel concept of atti-
tude control for multirotor-UAVs, based on dynamical
shifting of vehicle’s CoG. The CoG shifting is accom-
plished through the movement of masses located in
the motor arms. We have presented a nonlinear math-
ematical model and identified dominant components
in roll and pitch dynamics. Transfer functions have
been derived for the linearized model and stability
analysed through root locus. Furthermore, we have
given a detailed analysis of multi-rotor UAV dynam-
ical performance as a function of three mechanical
parameters. We have defined a metric that reflects the
speed of the open loop system, and optimized the met-
ric to get parameters for moving mass weight and

maximum displacement. Based on sensitivity and sta-
bility analysis, we have determined favourable vertical
position of the moving mass plane. Through the analy-
sis in frequency domain we have determined the mov-
ing mass servo system dynamics required to stabilize
the vehicle. Finally, we have shown the effectiveness
of the proposed UAV concept through a simulation in
the Gazebo environment and through experiments on
a laboratory testbed, consisted of a full-scale vehicle
mounted on a 2 DOF gimbal. The presented results
demonstrate a good agreement between the theoreti-
cal results obtained through linear system analysis and
results obtained both in simulation and experimental
testbed.

In our future work, we will address the influence of
varying rotor dynamics to system stability, which one
can expect when the rotor is powered by an internal
combustion engine. We will also address the con-
trol of roll/pitch dynamics through the combination of
rotor speed variations and CoG shift. Finally, we will
extend our controller structures with adaptive/robust
terms in order to address applications in which sys-
tem parameters vary, such as object transportation and
manipulation.
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